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Thermally activated transport of a dislocation loop within
an elastic model

Kazuhito Ohsawa *, Eiichi Kuramoto

Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
Abstract

We report thermally activated transport of a dislocation loop in terms of a line tension model, where the dislocation line
is assumed to be a flexible string. According to conventional rate theory, the features of thermal activation are determined
by the saddle-point geometry in high dimensional configuration space. If the circumference of a dislocation loop L is longer
than a critical length Lc, the selected saddle-point configuration is the well known double-kink type solution. On the other
hand, the manner of the thermal activation of a dislocation loop shorter than Lc is rather point-defect-like. In the present
work, we pay attention to the temperature dependence of transition rate which is represented such as m�0 expð�E=kBT Þ. The
pre-exponential factor depends on temperature like m�0 � T�1=2 for sufficiently long dislocation loops on the basis of the
analysis.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Prismatic dislocation loops are nucleated in met-
als by high-energy particle irradiation. In particular,
interstitial loops in BCC metals are quite mobile
along a close-packed direction and considered to
play an important role in the microstructural evolu-
tion in irradiated metals. In fact, such dislocation
loops are assumed to be active sinks for point-
defects in terms of the production bias model
(PBM) [1,2]. Subsequently, a generalized PBM was
proposed, where a part of the interstitial loops have
high-mobility [3].

The interstitial loops are regarded as self-intersti-
tial atom (SIA) clusters located in a habit plane. It
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was first revealed that the SIA clusters (interstitial
loops) are nucleated within the cascade region of
high-energy radiation damage by molecular dynam-
ics (MD) simulations [4]. Subsequently, the ther-
mally activated transport of a variety size of SIA
clusters and single SIA (crowdion) along a close-
packed direction has been investigated at finite tem-
peratures by MD simulations to estimate their
mobility [5,6]. The correlation between the jumps
of an SIA cluster and individual crowdions con-
tained in the cluster has been clarified in a kind of
MD modeling [7]. Moreover, the motion of crowdi-
ons and SIA clusters has been so far studied in the
Frenkel–Kontorova model [8] or a special ran-
dom-walk model [9] as well.

As mentioned above, a variety of modeling meth-
ods have been extensively proposed to study the
motion of dislocation loops in metals. However,
the thermally activated transport of dislocations,
.
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Fig. 1. Saddle-point energy Es versus loop length L [12]. Saddle-
point energy for the trivial and double-kink type solutions
bifurcate at L = Lc. The solid line represents the realized
activation energy. The values of the bow-out of the dislocation
line z0 are exhibited at some points.
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in particular straight dislocations, has been so far
investigated within the framework of conventional
rate theory and elastic model. According to rate
theory [10], every atomistic arrangement in the
matrix corresponds to a point in high dimensional
configuration space, and the transition path (mini-
mum energy path) from a stable state to another
must pass through at least one saddle-point. One
of the typical elastic models is the line tension model
(LTM) [11], where the dislocation is assumed to be a
smooth flexible string under the influence of a
potential barrier. In particular, Celli et al. [11]
inspected the saddle-point geometry to estimate
the pre-exponential factor of the Arrhenius’ equa-
tion for dislocations. The present work follows this
line of research history and applies these conven-
tional methods to the studies of the thermal activa-
tion of dislocation loops. Needless to say, such
modeling includes some approximations, and the
obtained results do not always agree with those
from MD simulations and other modeling. How-
ever, such research may suggest new perspectives
to the studies of the thermal activation of defects.
In fact, we proposed a substantial transition of the
dislocation loops from point-defects to dislocations
in our early work [12].

The present model cannot be applied to small-size
dislocation loops, where the elasticity theory is not
valid. In addition, we ignore the effect of the self-
interaction between the dislocation segments, which
sometimes comes into question, and we checked the
validity of these approximations [12].

2. Line tension model and saddle-point energy

We introduce a modified LTM for the dislocation
loop to investigate the one-dimensional transport
along the closed-packed axes. The displacement of
a dislocation line z(r) is described by the equation
of motion, such as

q0

o
2z

ot2
¼ c0

o
2z

or2
� oV

oz
; ð1Þ

where q0 and c0 are effective mass per unit length
and strength of line tension, respectively. Because
the circumference of the dislocation loop is assumed
to be L, periodic boundary conditions are imposed
such as z(r) = z(r + L). We use a sinusoidal function
as the potential barrier

V ðzÞ ¼ V 0 1þ cos
2pz
b

� �
; ð2Þ
where b is the Burgers vector. Therefore, two neigh-
boring stable states in the present model are
z(r) � ±b/2, i.e. the dislocation loop lying in the
potential valley. Thus, the thermal activation of
the dislocation loop means the transport from the
stable state z(r) � �b/2 to the next one z(r) � b/2,
and vice versa. Equilibrium conditions should be
satisfied everywhere on the dislocation line at the
stable state and saddle-point.

c0

d2z
dr2
¼ dV

dz
: ð3Þ

According to our early work [12], one obtains two
kinds of saddle-point configurations of the disloca-
tion loop according to Eq. (3). One of them is the
trivial solution

zðrÞ � 0: ð4Þ

The other is a double-kink type solution. When the
bow-out of the dislocation line is z0 (0 6 z0 < b/2),
the solution is represented as [13]:

zk ¼
b
p

sin�1ðs0 � snðR; s0ÞÞ; ð5Þ

where s0 = sinpz0/b, R = 2pr/Lc, sn is an elliptic
function and the subscript k means kink.

The critical length of the dislocation loop and
characteristic energy unit are defined as:

Lc ¼
ffiffiffiffiffiffi
c0

V 0

r
b and E0 ¼

ffiffiffiffiffiffiffiffiffiffi
c0V 0

p
b; ð6Þ

respectively.
We obtain the saddle-point energy Es as a func-

tion of the loop length L, i.e. circumference of the
dislocation loop, as shown in Fig. 1. The trivial
solution in Eq. (4) is possible for arbitrary loop
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length. The saddle-point energy Es for the trivial
solution is merely proportional to the loop length
Es = 2V0L because the potential height is 2V0. The
double-kink type solution as shown in Eq. (5) exists
for the case of L > Lc. The saddle-point energy for
the double-kink type solution is almost constant
and lower than that for the trivial solution. There-
fore, the former is selected as the saddle-point con-
figuration in this range.
3. Transition rate of dislocation loop

3.1. Rate theory

According to the conventional rate theory, the
transition rate C from one stable state to the next
one, i.e. the jump frequency, is determined by the
geometry of the configuration space, as schemati-
cally shown in Fig. 2. The transition rate for a min-
imum energy path from A to B through the isolated
saddle-point P0 is expressed as [10]:

C ¼
ffiffiffiffiffiffiffiffi
kBT
2p

r R
S e�/ðP 0Þ=kBT dSR
XA

e�/ðAÞ=kBT dV
; ð7Þ

where /(A) and /(P0) are the potential energy
around the stable state A and saddle-point P0,
Fig. 2. Schematic view of contours of potential energy / in high
dimensional configuration space for a dislocation loop shorter
than Lc. Points, A and B, are neighboring stable states and P0 is
isolated saddle-point corresponding to the trivial solution.
Hyper-surface S separates the region around A from that around
B and passes through P0. The potential energy profile along the
line QR is shown at the bottom of this figure.
respectively. Integration with respect to S is per-
formed over the hyper-surface S which contains
the isolated saddle-point P0 and is perpendicular
to the contours of constant / everywhere. Similarly,
integration with respect to V is performed over the
portion of configuration space to the A-side of the
hyper-surface S. Only the integrations in the vicinity
of A and P0 effectively contribute to Eq. (7) because
of the Boltzmann factor. Therefore, we employ the
theory of small vibrations to approximate Eq. (7)
assuming that the potential energy / around A

and P0 can be expanded in Taylor series truncated
at the second order terms

/ðAÞ ¼ /0ðAÞ þ 1=2
P
n¼0

ð2pmnqnÞ
2
; ð8Þ

/ðP 0Þ ¼ /0ðP 0Þ þ 1=2
P
n0¼0

ð2pm0nq0nÞ
2
; ð9Þ

where qn and q0n are generalized coordinates; mn and
m0n are normal modes. From the physical require-
ment of the saddle-point, it is necessary that there
should be at least one imaginary mode in m0n. Insert-
ing Eqs. (8) and (9) in Eq. (7), one obtains an expli-
cit form of the transition rate:

C ¼ m�0 exp �/ðP 0Þ � /ðAÞ
kBT

� �
; ð10Þ

where /(P0) � /(A) is the activation energy. The
pre-exponential factor m�0 is expressed by the normal
modes, as mentioned later.

3.2. Short dislocation loop, L < Lc

The saddle-point configuration of dislocation
loops shorter than Lc is the trivial solution, as
pointed out in the previous section. Therefore, nor-
mal modes about A and P0 are analytically calcu-
lated from the equation of motion Eq. (1) as:

m2
n ¼

V 0

q0b2

L2
c

L2
n2 þ 1

� �
about A; ð11Þ

m02n ¼
V 0

q0b2

L2
c

L2
n2 � 1

� �
about P 0; ð12Þ

where n = 0,1,2,3,. . . and Lc is the critical length
defined in Eq. (6). The frequency m00 about the sad-
dle-point P0 is imaginary and called ‘longitudinal
transition mode’. By removing this unstable mode,
the pre-exponential factor in Eq. (10) is expressed
[10,11]



Fig. 4. Schematic view of contours of potential energy / in the
configuration space for a dislocation loop longer than Lc.
Contour F is located in the hyper-surface S and indicates the
continuous distribution of the energetically lowest saddle-points
corresponding to the double-kink type solution. Points P1 and P2

are on the Contour F, and P0 is isolated saddle-point corre-
sponding to the trivial solution. Potential energy profile along the
line QR is shown at the bottom of this figure.
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: ð13Þ

Inserting Eqs. (11) and (12) in Eq. (13), the pre-
exponential factor is estimated as:

m�0 ¼
ffiffiffiffiffiffiffiffiffi
V 0

q0b2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðpL=LcÞ
sinðpL=LcÞ

s
: ð14Þ

The profile of m�0 is shown in Fig. 3.

3.3. Long dislocation loop, L > Lc

The saddle-point configuration of dislocation
loops longer than Lc is the double-kink type solu-
tion. A schematic view of the potential energy / in
the configuration space is shown in Fig. 4. Although
the saddle-point P0 still exists, the energetically low-
est saddle-points appear in the configuration space,
such as P1 and P2. They are continuously distributed
because the kink pair can be nucleated anywhere on
the dislocation loop. We denote the equivalent sad-
dle-points by the contour F in Fig. 4

The normal modes m0n around the double-kink
type solution in Eq. (5) are derived from Lamé’s
equation [13,14], as follows. We assume infinitesi-
mal vibration

zðtÞ ¼ zk þ nn expð2pm0ntiÞ: ð15Þ
Inserting Eq. (15) in Eq. (1) and neglecting the high-
er order terms, one obtains

~m02n nn ¼ �
dnn

dR2
þ f2s2

0 sn2ðR; s0Þ � 1gnn; ð16Þ

where ~m02n ¼ q0b2m02n =V 0. This equation has an infinite
number of eigenvalues, and first three of them are
analytically expressed as ~m020 ¼ s2

0 � 1, ~m021 ¼ 0 and
Fig. 3. Pre-exponential factor m�0 versus loop length L, and m�0
diverges at L = Lc. The value for L < Lc (left) is analytically
expressed but that for L > Lc (right) is numerically calculated.
~m022 ¼ s2
0, where s0 = sinpz0/b. The mode m00 corre-

sponds to the ‘longitudinal translation mode’
(imaginary frequency) and m01 is called ‘transverse
translation mode’ (zero frequency). In this zero fre-
quency mode m01, both sides of the kink pair move in
the same direction, and their net separation is not
changed during the vibration. The existence of the
transverse transition mode means that Eq. (13) can-
not be used directly for the calculation of the pre-
exponential factor m�0. In order to solve the problem,
we introduce an appropriate cut-off length to
perform the integration in Eq. (7), as follows

ffiffiffiffiffiffiffi
Mk

p Z L=2

�L=2

dq01 ¼
ffiffiffiffiffiffiffi
Mk

p
L; ð17Þ

where Mk is effective mass of the kink pair. Then,
the pre-exponential factor is represented as [11]

m�0 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffi
2pMk

kBT

s Y1
n¼0

mn

Y1
n¼2

m0n

 !�1

: ð18Þ

In the present case of L > Lc, the pre-exponential
factor m�0 depend on temperature as T�1/2. Because
one of the real modes m02 approaches zero, m�0 di-
verges in the limit of L! Lc + � as well. The value
of m�0 is approximately estimated only by a few
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normal modes ~m0n obtained from numerical calcula-
tions, as shown in Fig. 3.

4. Discussion

The critical length Lc defined in Eq. (6) would be
an appropriate criterion to classify the dislocation
loops into point-defects and dislocations. If the
circumference of the dislocation loops is longer than
Lc, the associated saddle-point configuration is the
double-kink type solution and activation energy
almost independent of the loop length L. These
properties indicate dislocation-like transport. On
the other hand, the trivial solution is realized as
the saddle-point configuration in the case of
L < Lc, which is regarded as point-defect-like migra-
tion. Although the analysis within the framework of
the present LTM would be crude, such a transition
is intuitively obvious. Small-size SIA clusters should
be regarded as point-defects. Furthermore, an edge
dislocation is also regarded as an extremely large
SIA cluster because it is made up by an infinite num-
ber of SIAs filling up an extra half-plane. Thus, the
SIA clusters should qualitatively change from point-
defects to dislocations somewhere with increasing
cluster size.

We calculate the pre-exponential factor m�0 of the
Arrhenius’ equation on the basis of the rate theory
[10], and it diverges at the critical length L = Lc,
as shown in Fig. 3. The cause of the divergence is
that the small vibration approximation used in Eq.
(9) becomes inappropriate at L = Lc. If L < Lc, the
potential energy / is approximately represented by
a parabolic shape around the isolated saddle-point
P0, as shown in Fig. 2. However, the bottom of
the potential / is supposed to be almost flat at the
critical length L = Lc. Therefore, it is not appropri-
ate that the potential energy / is expanded in a Tay-
lor series truncated at the second order terms. In
order to avoid the divergence, we have to take into
account the higher order terms in the expansion of
the potential energy /.

In the present work, we find the temperature
dependence of the pre-exponential factor of Arrhe-
nius’ equation, such as m�0 � T�1=2, for sufficiently
long dislocation loops. However, the manner of
the temperature dependence of m�0 has been still con-
troversial. The reason is that we have not properly
solved the problem of the divergence of m�0 at
L = Lc. Anyway, it is one of the typical properties
of straight dislocations that m�0 usually depends on
temperature [15]. The present result reflects the dis-
location-like transport as well. Finally, we would
like to add that Marian et al. [6] also estimated
the pre-exponential factor m�0 on the basis of the nor-
mal modes about the stable state and saddle-point.
Acknowledgements

The authors would like to thank Professor M.
Oikawa of Research Institute for Applied Mechan-
ics in Kyushu University and Emeritus Professors
T. Ninomiya of University of Tokyo for providing
useful suggestions.
References

[1] C.H. Woo, B.N. Singh, Philos. Mag. A 65 (1992) 889.
[2] B.N. Singh, A.J.E. Foreman, Philos. Mag. A 66 (1992) 975.
[3] S.I. Golubov, B.N. Singh, H. Trinkaus, J. Nucl. Mater. 276

(2000) 78.
[4] T. Diaz de la Rubia, M.W. Guinan, Phys. Rev. Lett. 66

(1991) 2766.
[5] B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas,

J. Nucl. Mater. 276 (2000) 33.
[6] J. Marian, B.D. Wirth, A. Caro, B. Sadigh, G.R. Odette,

J.M. Perlado, T. Diaz de la Rubia, Phys. Rev. B 65 (2002)
144102.

[7] A.V. Barashev, Yu. N. Osetsky, D.J. Bacon, Philos. Mag. A
80 (2000) 2709.

[8] S.L. Dudarev, Philos. Mag. 83 (2003) 3577.
[9] V.A. Ryabov, Philos. Mag. A 82 (2002) 751.

[10] G.H. Vineyard, J. Phys. Chem. Solids 3 (1957) 121.
[11] V. Celli, M. Kabler, T. Ninomiya, R. Thomson, Phys. Rev.

131 (1963) 58.
[12] K. Ohsawa, E. Kuramoto, Phys. Rev. B 72 (2005) 054105.
[13] I. Bakas, C. Sourdis, Fortschr. Phys. 50 (2002) 815.
[14] F.M. Arscott, Periodic Differential Equations, Pergamon

Press, Oxford, 1964, p. 191.
[15] J.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill,

New York, 1968, p. 484.


	Thermally activated transport of a dislocation loop within an elastic model
	Introduction
	Line tension model and saddle-point energy
	Transition rate of dislocation loop
	Rate theory
	Short dislocation loop, L lt Lc
	Long dislocation loop, L gt Lc

	Discussion
	Acknowledgements
	References


